Suramin inhibits the early effects of PLA2 neurotoxins at mouse neuromuscular junctions: A twitch tension study
نویسندگان
چکیده
Several phospholipase A(2) (PLA(2)) neurotoxins from snake venoms can affect acetylcholine release at the neuromuscular junction. In isolated nerve-muscle preparations three distinct phases have been described for this phenomenon: An initial transient decrease in twitch tension; a second facilitatory phase during which twitch height is greater than control twitch height; and the last phase which causes a reduction in twitch height that finally results in paralysis. Suramin has been reported to inhibit the toxic effects of β-bungarotoxin and another PLA(2) neurotoxin, crotoxin in vitro and in vivo. We have further examined the effects of suramin on the three phases of the effects of the presynaptic PLA(2) neurotoxins β-bungarotoxin, taipoxin and ammodytoxin on mouse phrenic nerve-hemidiaphragm preparations. When preparations were pre-treated with suramin (0.3mM), the early biphasic effects (depression followed by facilitation) were abolished, and the time taken for final blockade induced by β-bungarotoxin, taipoxin and ammodytoxin A was significantly prolonged. In contrast, suramin did not significantly affect the facilitation induced by the potassium channel blocking toxin dendrotoxin I when applied under the same conditions. In addition, application of 0.3mM suramin did not prevent the facilitatory actions of 3,4-diaminopyridine (3,4-DAP) and tetraethylammonium chloride (TEA). Overall, the mechanism whereby suramin reduces the effects of PLA(2) neurotoxins remains elusive. Since suramin reduces both enzyme-dependent and enzyme-independent effects of the toxins, suramin is not acting as a simple enzyme inhibitor. Furthermore, the observation that suramin does not affect actions of standard K(+) channel blockers suggests that suramin does not stabilise nerve terminals.
منابع مشابه
Suramin inhibits the early effects of PLA
Several phospholipase A 2 (PLA 2 ) neurotoxins from snake venoms can affect acetylcholine release at the neuromuscular junction. In isolated nerve-muscle preparations three distinct phases have been described for this phenomenon: An initial transient decrease in twitch tension; a second facilitatory phase during which twitch height is greater than control twitch height; and the last phase which...
متن کاملP 25: The Facilitatory Action of Snake Venom Phospholipase A2 Neurotoxins by Which Increase the Release of Acetylcholine, May Improve Alzheimer\'s Disease Symptoms
Introduction: In a serious brain disorder like Alzheimer's disease, the levels of acetylcholine (Ach) drop significantly. The gradual death of cholinergic brain cells leads to a profound loss of memory and learning ability. Acetylcholine is the chemical messenger that sends messages from one neuron to another in the area of the brain used for memory. Many of the current medications act to enhan...
متن کاملEffects of Black Scorpion Androctonus crasicuda Venom on Striated Muscle Preparation in vitro.
Effects of venom from black scorpion Androctonus crasicuda (AC) were determined on isolated chick biventer cervices nerve-muscle and mouse hemidiaphragm preparations using twitch tension method. The isolated nerves were stimulated by electrical stimulator and response to each stimulus was recorded. The venom mainly acted prejunctionally to facilitate neuromuscular activity due to an increase in...
متن کاملEffects of Black Scorpion Androctonus crasicuda Venom on Striated Muscle Preparation in vitro.
Effects of venom from black scorpion Androctonus crasicuda (AC) were determined on isolated chick biventer cervices nerve-muscle and mouse hemidiaphragm preparations using twitch tension method. The isolated nerves were stimulated by electrical stimulator and response to each stimulus was recorded. The venom mainly acted prejunctionally to facilitate neuromuscular activity due to an increase in...
متن کاملSuramin protects the murine motor nerves from the toxic effects of presynaptic Ca(2+) channel inhibitors.
The purpose of this study is to investigate whether suramin is capable of preventing the neurotoxic effects of Ca(2+) channel inhibitors at the presynaptic sites. Mouse diaphragm and triangularis sterni preparations were used for this study in order to measure the muscle tension and nerve terminal Ca(2+) current, respectively. Both omega-conotoxin MVIIC and omega-agatoxin IVA markedly inhibit t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011